-Global Grid Forum (GGF)
-Oracle’s grid infrastructure:
-Low cost
-High quality of service
-Easy to manage
Oracle Database 10g: “g” Stands for Grid
Global Grid Forum (GGF) is a standards body that develops standards for grid computing. It comprises a set of committees and working groups that focus on various aspects of grid computing. The committees and working groups are composed of participants from academia, the research community, and (increasingly) commercial companies. You can see the Web site of GGF at http://www.gridforum.org.
Oracle has created the grid computing infrastructure software that balances all types of workloads across servers and enables all those servers to be managed as one complete system. Grid computing can achieve the same very high level of reliability as mainframe computing because all components are clustered. But unlike mainframes and large UNIX symmetric multiprocessing (SMP) servers, a grid can be built with open system technologies, such as Intel processors and the Linux operating system, at a very low cost.
Oracle’s grid computing technology includes:
Automatic Storage Management (ASM)
Real Application Clusters (RAC)
Oracle Streams
Enterprise Manager Grid Control
Automatic Storage Management spreads database data across all disks, creates and maintains a storage grid, and provides the highest input/output (I/O) throughput with minimal management costs. As disks are added or dropped, ASM redistributes the data automatically. (There is no need for a logical volume manager to manage the file system.) Data availability increases with optional mirroring, and you can add or drop disks online. For more information, see the lesson titled “Managing Database Storage Structures.”
Oracle’s Real Application Clusters runs and scales all application workloads on a cluster of servers and offers the following features:
Integrated clusterware: This includes functionality for cluster connectivity, messaging and locking, cluster control, and recovery. It is available on all platforms that are supported by Oracle Database 10g.
Automatic workload management: Rules can be defined to automatically allocate processing resources to each service both during normal operations and in response to failures. These rules can be dynamically modified to meet the changing business needs. This dynamic resource allocation within a database grid is unique to Oracle RAC.
Automatic event notification to the mid-tier: When a cluster configuration changes, the mid-tier can immediately adapt to instance failover or availability of a new instance. This enables end users to continue working in the event of instance failover without the delays typically caused by network timeouts. In the event of new instance availability, the mid-tier can immediately start load balancing connections to that instance. Oracle Database 10g Java Database Connectivity (JDBC) drivers have the “fast connection failover” functionality that can be automatically enabled to handle these events.
Oracle Streams provides a unified framework for information sharing, combining message queuing, data replication, event notification, data warehouse loading, and publishing and subscribing functionality into a single technology. Oracle Streams can keep two or more data source copies synchronized when updates are applied at either site. It can automatically capture database changes, propagate the changes to subscribing nodes, apply changes, and detect and resolve data update conflicts. Oracle Streams can be used directly by applications as a message-queuing or workflow feature, enabling communications between applications in the grid.
Enterprise Manager Grid Control manages gridwide operations that include managing the entire stack of software, provisioning users, cloning databases, and managing patches. It can monitor the performance of all applications from the point of view of your end users. Grid Control views the performance and availability of the grid infrastructure as a unified whole rather than as isolated storage units, databases, and application servers. You can group hardware nodes, databases, and application servers into single logical entities and manage a group of targets as one unit.
Oracle has created the grid computing infrastructure software that balances all types of workloads across servers and enables all those servers to be managed as one complete system. Grid computing can achieve the same very high level of reliability as mainframe computing because all components are clustered. But unlike mainframes and large UNIX symmetric multiprocessing (SMP) servers, a grid can be built with open system technologies, such as Intel processors and the Linux operating system, at a very low cost.
Oracle’s grid computing technology includes:
Automatic Storage Management (ASM)
Real Application Clusters (RAC)
Oracle Streams
Enterprise Manager Grid Control
Automatic Storage Management spreads database data across all disks, creates and maintains a storage grid, and provides the highest input/output (I/O) throughput with minimal management costs. As disks are added or dropped, ASM redistributes the data automatically. (There is no need for a logical volume manager to manage the file system.) Data availability increases with optional mirroring, and you can add or drop disks online. For more information, see the lesson titled “Managing Database Storage Structures.”
Oracle’s Real Application Clusters runs and scales all application workloads on a cluster of servers and offers the following features:
Integrated clusterware: This includes functionality for cluster connectivity, messaging and locking, cluster control, and recovery. It is available on all platforms that are supported by Oracle Database 10g.
Automatic workload management: Rules can be defined to automatically allocate processing resources to each service both during normal operations and in response to failures. These rules can be dynamically modified to meet the changing business needs. This dynamic resource allocation within a database grid is unique to Oracle RAC.
Automatic event notification to the mid-tier: When a cluster configuration changes, the mid-tier can immediately adapt to instance failover or availability of a new instance. This enables end users to continue working in the event of instance failover without the delays typically caused by network timeouts. In the event of new instance availability, the mid-tier can immediately start load balancing connections to that instance. Oracle Database 10g Java Database Connectivity (JDBC) drivers have the “fast connection failover” functionality that can be automatically enabled to handle these events.
Oracle Streams provides a unified framework for information sharing, combining message queuing, data replication, event notification, data warehouse loading, and publishing and subscribing functionality into a single technology. Oracle Streams can keep two or more data source copies synchronized when updates are applied at either site. It can automatically capture database changes, propagate the changes to subscribing nodes, apply changes, and detect and resolve data update conflicts. Oracle Streams can be used directly by applications as a message-queuing or workflow feature, enabling communications between applications in the grid.
Enterprise Manager Grid Control manages gridwide operations that include managing the entire stack of software, provisioning users, cloning databases, and managing patches. It can monitor the performance of all applications from the point of view of your end users. Grid Control views the performance and availability of the grid infrastructure as a unified whole rather than as isolated storage units, databases, and application servers. You can group hardware nodes, databases, and application servers into single logical entities and manage a group of targets as one unit.